Abstract

In this study, the bubble separation behavior in a gas–liquid separator is numerically investigated on the basis of the Euler–Lagrange approach, in which the forces acting on bubbles in a swirling flow field are modeled to calculate the trajectories of the bubbles. By adopting this approach, the effects of five parameters, namely, back pressure, Reynolds number, bubble diameter, void fraction, and swirl number, on separation performance in terms of pressure loss, separation efficiency, separation length, and split ratio are computed and analyzed. On the basis of the analysis, correlations of separation length with the two main parameters are established, which can serve as a basis for the optimal design of separator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.