Abstract

Bubble flow interaction can be important in many practical engineering applications. For instance, cavitation is a problem of interaction between nuclei and local pressure field variations including turbulent oscillations and large scale pressure variations. Various types of behaviours fundamentally depend on the relative sizes of the nuclei and the length scales of the pressure variations as well as the relative importance of bubble natural periods of oscillation and the characteristic time of the field pressure variations. Similarly, bubbles can significantly affect the performance of lifting devices or propulsors. We present here some fundamental numerical studies of bubble dynamics and deformation, then a practical method using a multi-bubble Surface Averaged Pressure (DF-Multi-SAP©) to simulate cavitation inception and scaling, and connect this with more precise 3-D simulations. This same method is then extended to the study of two-way coupling between a viscous compressible flow and a bubble population in the flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.