Abstract

In the present paper, a computational fluid dynamics (CFD) modeling study was performed for the combustion of the brown coal in a large-scale tangentially-fired furnace (550MW) under different operating conditions. The AVL Fire CFD code has been used to model the combustion processes. The mathematical models of coal combustion with the appropriate kinetic parameters were written and incorporated to the code as user defined functions. These models consist of pulverised coal (PC) devolatilization, char burnout, and heat and mass transfer. The simulation of the PC combustion was carried out using multi-step reaction chemistry mechanisms. The level of confidence of this numerical model was based on the previous validations of the lignite combustion in a lab-scale furnace, as well as the validation parameters of the present furnace at the standard existing conditions in terms of temperature values and species concentrations. Performance of the boiler under ten different operating conditions was investigated. The strategy of operation schemes for the first six combustion scenarios were based on the change of the out-of-service (turned off) burners under full load operation, while the rest cases were carried out at 20% lower and 20% higher loads than the standard operating conditions. The validated model was used to perform the following investigation parameters: furnace gas temperatures, species concentrations (O2, CO and CO2), velocity distributions, and char consumption. The predictions demonstrated that there are good temperature distributions in the furnace when the turned off burners are set in the opposite direction under full load operation. For higher aerodynamic effect, the numerical results showed improvements on the combustion characteristics in terms of species concentrations and char burnout rates in comparison with the standard operating case. The findings of this study provide good information to optimize the operations of the utility tangentially coal-fired boiler with less emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.