Abstract

ABSTRACT: Computational fluid dynamic (CFD) simulation techniques have played an essential role in simulating and understanding the initiation, growth, and rupture of cerebral aneurysms. Hemodynamic parameters are mainly used to examine the rupture risk status of cerebral aneurysms using blood flow CFD simulation. Blood was considered as single-phase flow model with both Newtonian and non-Newtonian to predict the rupture risk analysis. However, to better understand predicting the risk of cerebral aneurysm rupture, blood requires two-phase, such as plasma and red blood cells (RBCs), also known as erythrocytes. In this study, the two-phase blood flow model was solved by the discrete phase model (DPM) with Lagrangian approach, in which blood was modeled two-phase fluid as a continuous phase plasma and particulate phase RBCs. Three patient-specific aneurysm geometries have been selected to determine wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) with two-phase blood flow simulation. To analyze the velocity distribution inside the aneurysms, velocity streamlines and surface velocities were reported. The pulsatile blood flow simulation was performed for aneurysm geometries, where the mean inlet Reynolds number was calculated between 490 and 1370. The value of WSS, OSI, and RRT was quantified based on the Reynolds number. Reynolds number's minimum value indicates the low WSS, low OSI, and short RRT, and the maximum value of Reynolds number shows the high WSS, high OSI, and long RRT. The high WSS, high OSI, and long RRT, velocity streamlines distribution, surface velocity changes were determined with two-phase blood in aneurysm geometries, aneurysm geometry one and three are the medium and giant size saccular aneurysm may have a higher risk of rupture while aneurysm geometry two is medium size fusiform aneurysm has a lower risk of rupture. The two-phase blood flow model presents reasonable hemodynamic parameters that correlate with aneurysms rupture risk prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.