Abstract

The morbidity and mortality of aneurysm rupture have raised significantly in current years. In this research, numerical investigations have been performed to disclose the impacts of hemodynamic on the breach and growth of the Intracranial Aneurysms (IA) in the middle cerebral artery (MCA). To perform this research, computational fluid dynamic (CFD) methodology is employed to model the non-Newtonian blood stream through the IA. 3D model of IA is chosen for the analysis blood flow. Wall shear stress (WSS) was evaluated and compared at the high-risk region, where the probability of rupture is high. This study offers precise information and insight about the influence of blood viscosity and velocity on the danger of the aneurysm rupture in the MCA. Our outcomes show that the location and orientation of the aneurysm have direct impacts on the growth of the aneurysm. The main attention of this research is to reveal more vibrant facts about the primary reasons for the rupture of the aneurysm and present connection among the rupture points and the local hemodynamic features. This work tries to demonstrate the critical area on the aneurysm surface by analyzing the WSS and pressure distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call