Abstract

The performance and capacity of Kraft recovery boilers is sensitive to black liquor velocity, droplet size and flow distribution in the furnace. Studies have shown that controlling droplet size and flow distribution improves boiler efficiency while allowing increased flight drying and devolatilization, and decreased carryover. The purpose of this study is to develop a robust two-phase numerical model to predict black liquor splashplate nozzle spray characteristics. A three-dimensional time dependent numerical study of black liquor sheet formation and sheet breakup is described. The volume of fluid (VOF) model is used to simulate flow through the splashplate nozzle up to initial sheet breakup and droplet formation. The VOF model solves the conservation equations of volume fraction and momentum utilizing the finite volume technique. Black liquor velocity, droplet size and flow distribution over a range of operating parameters are simulated using scaled physical models of splashplate nozzles. The VOF model is compared to results from a flow visualization experiment and experimental data found in the literature. The details of the simulation and experimental results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.