Abstract

Biomagnetic fluid dynamics is the study of the interaction of biological fluids with an applied steady magnetic field. Recently, several medical applications begin to utilize magnetic labeling of specific cells and targeted drug delivery using magnets. The magnetically labeled cells and the drug encapsulates are usually loaded in the blood stream and are directed toward a specific site by use of a magnet. In this paper, numerical simulation of biomagnetic fluid in the presence of a thrombus when exposed to magnetic field is presented. The finite analytic method is used to obtain the numerical simulation. It is found that the magnetic force causes a drastic change in the fluid behavior and the friction coefficient increases as the magnetic field strength increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.