Abstract

Phase field method (PFM) offers the prospect of carrying out realistic numerical calculation on dendrite growth in metallic systems. The dendritic growth process of multiple dendrites and direcitonal solidification during isothermal solidifications in a Fe-0.5mole%C binary alloy were simulated using phase field model. Competitive growth of multiple equiaxed dendrites were simulated, and the effect of anisotropy on the solute segregation and microstructural dedritic growth pattern in directional solidification process was studied in the paper. The simulation results showed the impingement of arbitrarily oriented grains, and the grains began to impinge and coalesce the adjacent grains with time going on, which made the dendrite growth inhibited obviously. In the directional solidification, the maximum concentration gradient showed in the dendrite tip, and highest solute concentration existed at the bottom of the dendrites. With the increasing of the anisotropy, dendrite tip radius became smaller, and the crystal structure is more uniform and dense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call