Abstract

We numerically demonstrate that ‘mode-entangled states’ based on the transverse modes of classical optical fields in multimode waveguides violate Bell's inequality. Numerically simulating the correlation measurement scheme of Bell's inequality, we obtain the normalized correlation functions of the intensity fluctuations for the two entangled classical fields. By using the correlation functions, the maximum violations of Bell's inequality are obtained. This implies that the two classical fields in the mode-entangled states, although spatially separated, present a nonlocal correlation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call