Abstract

This paper reports preliminary computational fluid dynamics (CFD) simulations of backdraft observed in an experimental rig at Lund University. The analysis was performed with the CFX software using the Detached Eddy Simulation (DES) turbulence model, a hybrid of Large Eddy Simulation (LES) and RANS, in combination with the EDM combustion model. The DES model uses a RANS formulation in wall proximity to avoid computationally expensive grid resolution that is necessary for realistic LES predictions in wall layers. The preliminary results are qualitatively promising. The simulations began at the instant at which the door opens. A stream of fresh and cold air enters the enclosure as a gravity current. In the rig, ignition was triggered by flammable conditions existing at a wire, which was constantly heated. In the CFD model the ignition time is computed automatically when flammability conditions are reached inside the enclosure, at the wire, as part of the analysis. Subsequently, the fire front is formed. The deflagration expels fuel-rich mixture into environment, and the combustion continues outside the enclosure as a typical ‘secondary’ event. Considering that backdraft is a very complex phenomenon, the outcome is considered by the authors to be encouraging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.