Abstract
High-fidelity modeling tools are essential for accurate predictions of planetary entry. The same tools can also be used to interpret ground test data. A hypersonic aerothermodynamic computational fluid dynamic code is used to compute the flowfield of a high-enthalpy flow facility, and the results are compared to published experimental data. A test case is selected that consists of a bulk enthalpy flow that discharges into a vacuum chamber at 0.228 kPa. The simulation parameters are compared to radial and axial velocity profiles. Surface pressure and heat flux profiles are analyzed, and excellent agreement is found with the experimental data. A parametric study is carried out in order to better assess the effects of the initial and boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.