Abstract
Smoke inhalation is a major cause of death in fire accident. Three quarters of building fire casualties were the result of excessive smoke inhalation, even with the presence of a control system. One of the main reasons to a high percentage of fatality is poor circulation and exhaustion of smoke. A proposed system, including an integrated ACMV exhaust with additional louver, will be simulated and compared with the current conventional approach, the fixed pressurization system. The purpose of this study is to determine the effectiveness of the newly proposed approach to smoke exhaustion. Results showed that the path of obscuration for the conventional system in the room displayed a lowered value of 8.77 %, as compared to 9.71% for the integrated ACMV system, due to the greater propagation of smoke out of the room. The results are in agreement as there is a noticeably faster subsiding of hot air temperature at the corridor for the integrated ACMV system than that of the conventional system, after the peak temperature spread of 115 seconds. The current study concluded that the proposed integrated ACMV system with additional louver is more effective for smoke control than the conventional design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.