Abstract

A numerical investigation has been conducted to examine turbulent flow and heat transfer characteristics in a three-dimensional isothermal tube mounted with 60° angled rings (AR). The ARs with pitch spacing ratio, PR=1.0 and various blockage ratios (BR) ranging from 0.025-0.1 are introduced. The computations are based on a finite volume method and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds number (Re) ranging from 3000 to 12000. To generate a main counter-vortex pair flow in the tube, ARs at an attack angle of 60° are mounted repeatedly in the tube. Effect of different BRs at a single PR and nanofluid, Al2O3water, with volume fractions 1% and 5% on heat transfer and friction loss is investigated. It is apparent that two main vortex flows created by the ARs exist and help to induce impinging flows on the tube wall leading to drastic increase in heat transfer rate over the tube. The increment in the BR gives rise to the increase in the Nusselt number and friction factor. The computational results reveal that the maximum thermal enhancement factor for the AR with BR=0.025 is found to be 1.8 at Re =3000. The results show that nanofluid, Al2O3 water, can increase the thermal performance when increasing volume fraction to 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.