Abstract

Unobstructed air passageways as well as sufficient contact of the air stream with the mucous membrane are essential for the correct function of the nose. For that, local flow phenomena, which often cannot be captured by standard diagnostic methods, are important. We developed and validated a method for the numerical simulation of the nasal airflow. Two anatomically correct, transparent resin models of human nasal cavities, manufactured by a special casting technology, and the nasal cavities of two patients were reconstructed as Computer Aided Design models based on computed tomography (CT) scans. One of the nasal models and one clinical case represented a normal nasal anatomy, while the others were examples of pathological alterations. The velocity and pressure fields in these reconstructed cavities were calculated for the entire range of physiological nasal inspiration using commercially available computational fluid dynamics software. To validate the results rhinoresistometric data were measured and characteristic streamlines were videotaped for the resin models. The numerical results were in good agreement with the experimental data for the investigated cases. An example of a complex clinical case demonstrates the potential benefit of the developed simulation method for rhinosurgical planning. The results support the assumption that even under the specific conditions of the clinical practice the application of numerical simulation of nasal airflow phenomena may become realistic in the near future. However, important technical issues such as a completely automated reconstruction of the nasal cavity still need to be resolved before such simulations are efficient and cost effective enough to become a standard tool for the rhinologist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.