Abstract

Acoustic wave propagation in fluid-saturated porous cylindrical shell is investigated in this paper by using the Biot’s theory. The Expressions for acoustic pressure and radical displacement in and out fluid, the expressions for components of solid and filtration displacement and pore fluid pressure and stress tensor are given. The numerical simulation is operated on acoustic field in fluid of poroelastic cylindrical shell, and the full-waveform is obtained by Fourier transform, and acoustic pressure field in frequency-wavenumber domain is analyzed, as well as the influence of inner and outer radii on wave amplitude is discussed. It shows that if the thickness of shell remains constant, the amplitude of longitudinal mode increases and that of Stoneley wave decreases when inner and outer radii increasing. In the fast formation the influence of inner and outer radii on the amplitude of longitudinal mode is notable. In the slow formation the amplitude of Stoneley wave will decrease with inner and outer radii increasing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.