Abstract

This work presents two numerical models to simulate the transient and steady state behavior of a vapor compression refrigeration system. The condenser and the evaporator were divided into a number of control volumes. Time dependent partial differential equations system was obtained from the mass, energy and momentum balances for each control volume. As the expansion valve and the compressor both have very small thermal inertia, the steady state models were applied for these components. Transient and steady state models numerical predictions were compared and good agreement was found. Further simulations were performed with the objective of verifying the possibility of controlling the refrigeration system and the superheating of the refrigerant in the evaporator outlet by varying the compressor speed and the throttling valve sectional area. The results indicate that the proposed models can be used to formulate an algorithm for controlling a refrigeration system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.