Abstract

The temperature of the sun was modeled in this study using two transient solar temperature equations for sunrise and sunset that were developed for designing a latent heat thermal energy storage (LHTES) system for a concentrated solar power (CSP) plant. The derivation of the equations was based on the existing solar hour angle and the fundamental periodic function equations. Ansys' computational fluid dynamics code was used to investigate numerically the transient response of the conjugate melting and solidification of a phase change material (PCM) in a cylindrical shell and helical heat pipe (HHP) thermal system. The models for both equations were applied as user-defined functions (UDFs). The heat transfer medium was air. The predicted liquid and solid fractions provide quantitative data on the temperature and the stored solar energy. The effectiveness of both models in enhancing heat transfer and their suitability as real-time transient solar temperature models in heat transfer engineering is demonstrated by comparisons between their outputs. With high agreement, experimental data from the open literature was used to validate the numerical model's predictions. The solar temperature models aim to contribute to heat transfer enhancement for a reduced PCM energy storage time in designing a high-temperature solar thermal storage that is adequate to maintain a steady supply of electricity and energy for domestic and commercial applications and to accelerate the global transition to low-carbon energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call