Abstract

In this study, the slipper of swash plate axial piston pumps and motors is modeled as a hybrid (hydrostatic and hydrodynamic) thrust pad bearing. The effects of the slightly concave and convex geometries of the slipper sliding surface are examined. The motion of the slipper model is numerically simulated, and its tribological characteristics are examined under eccentric and dynamic load conditions. The calculations under these conditions indicate that, for the concave slipper, the fluctuation of the bearing pad azimuth increases, and the attitude of the slipper becomes unstable. In contrast, for the convex slipper, the attitude becomes stable, but the clearance increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.