Abstract

Seeding a small amount of vaporized potassium with low ionization potential into plasma is one of the effective methods for the enhancement of the electrical conductivity of plasma, which strongly affects the thermofluid fields. In the present study, the thermofluid fields and the particle behavior in the radio frequency inductively coupled plasma (RF-ICP) with electrical enhancement by seeding vaporized potassium are numerically investigated for laminar flow and turbulent flow. The behaviors of four kinds of particles injected into the electrically enhanced plasma were obtained with a Lagrangian method. Particle phase change with melting and the particle diameter variation with evaporation, non-continuum effect for smaller particle diameter, turbulent dispersion and interference with eddies were also taken into account. It is shown that, the electrons diffuse widely and the temperature region less than 2000–8000 K shifts downstream in seeding potassium. In the turbulent flow, electrons diffuse more upstream, which results in the expansion of the temperature region to upstream. The injected particles are heated more rapidly and evaporate more intensively in the turbulent flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.