Abstract

Hydropower plants often work in off-design conditions to regulate the power grid frequency. Frequent transient operation of hydraulic turbines leads to premature failure, fatigue and damage to the turbine components. The speed-no-load (SNL) operating condition is the last part of the start-up cycle and one of the most damaging operation conditions of hydraulic turbines. Hydraulic instabilities and high-stress pressure fluctuations occur due to the low flow rate and unsteady load on the runner blades. Numerical simulations can provide useful insight concerning the complex flow structures that develop inside hydraulic turbines during SNL operation. Together with experimental investigations, the numerical simulations can help diagnose failures and optimize the exploitation of hydraulic turbines. This paper introduces the numerical model of a full-scale 10 MW Kaplan turbine prototype operated at SNL. The geometry was obtained by scaling the geometry of the corresponding model turbine as the model and prototype are geometrically similar. The numerical model is simplified and designed to optimize the numerical precision and computational costs. The guide vane and runner domains are asymmetrical, the epoxy layer applied to two runner blades during the experimental measurements is not modelled and a constant runner blade clearance is employed. The unsteady simulation was performed using the SAS–SST turbulence model. The numerical results were validated with torque and pressure experimental data. The mean quantities obtained from the numerical simulation were in good agreement with the experiment. The mean pressure values were better captured on the pressure side of the runner blade compared to the suction side. However, the amplitude of the pressure fluctuations was more accurately predicted on the suction side of the runner blade. The amplitude of the torque fluctuations was considerably underestimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.