Abstract

A closed wet cooling tower with novel design was proposed and numerically investigated. The studied cooling tower consists of two main parts: one heat and mass transfer unit (HMTU) and one heat transfer unit (HTU). In the HMTU, copper tubes are arranged as heat transfer tubes while plastic tubes are collocated to enlarge the mass transfer area between the spray water and the airflow. In the HTU, only copper tubes are adopted as heat transfer tubes. Heat and mass transfer process takes place among the process water, airflow and spray water in the HMTU, while in the HTU only heat transfer between the process water and the spray water is observed. A transient one dimensional distributed-parameter model was adopted to evaluate the cooling tower performance under different operating conditions. Determination of heat and mass transfer coefficients, as well as the influence of Lewis number on the cooling tower performance, was presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.