Abstract
In Nordic countries, biomass gasification in a cyclone gasifier combined with a gas engine has been employed to generate small scale heat and power. Numerical simulations were carried out to analyze the effect of different operating conditions on the functioning of the gasifier. Reynolds-Averaged Navier-Stokes equations are solved together with the eddy-break up combustion model in conjunction with a modified k − ϵ model to predict the temperature and the flow field inside the gasifier. Results were compared with the experimental measurements in a 4.4 MW cyclone gasifier constructed by Meva Energy AB at Hortlax, Piteå, Sweden. The predicted results were in good agreement with the experimental data and the model provides detailed information about the gas compositions, cold gas efficiency and temperature field. Furthermore, the model allows different operating scenarios to be examined in an efficient manner such as the number of inlets, fuel to air velocity difference (slip-velocity) and moisture content in the fuel feedstock. The cold gas efficiency, composition of product gases and outlet temperature were monitored for each test case. These findings help to understand the importance of geometry modification, feedstock contents and make it possible to scale-up the gasifier for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.