Abstract

Abstract. Numerical simulations using the Direct Simulation Monte Carlo (DSMC) method are known to be useful for analyses of aerodynamic effects on in-situ rocket measurements in the lower thermosphere, but the DSMC analysis of a spin modulation caused by an asymmetric flow around the rocket spin axis has been restricted to the two-dimensional and axially symmetric simulations in actual sounding rocket experiments. This study provides a quantitative analysis of the spin modulation using a three-dimensional (3-D) simulation of the asymmetric flow with the DSMC method. Clear spin modulations in the lower thermospheric N2 density measurement by a rocket-borne instrument are simulated using the rocket attitude and velocity, the simplified payload structure, and the approximated atmospheric conditions. Comparison between the observed and simulated spin modulations show a very good agreement within 5% at around 100km. The results of the simulation are used to correct the spin modulations and derive the absolute densities in the background atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.