Abstract

Numerical simulation studies of D-T fusion produced neutron irradiation-induced changes in the electrical characteristics of commercially available Passivated Implanted Planar Silicon (PIPS) detectors (with ρ = 7.4 kΩcm) are carried out using a commercial device simulator for plasma X-ray tomography in nuclear fusion reactors. The proposed radiation damage model is validated by comparing with the experimental data of 14.1 MeV neutron irradiated PIPS detector for fluence up to 3.6 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> n/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The possible changes in the irradiated detector characteristics for higher neutron fluence levels are predicted. Furthermore, the simulated results for higher neutron fluence are validated by comparing with the reported experimental results. The probable deterioration in the X-ray energy response of PIPS detectors is analyzed from the changes in the electrical characteristics due to neutron irradiation. The simulated investigations are also repeated for detectors with different resistivity substrates (4 kΩ cm, and 300 Ωcm) and thin detector structures (100 μm). From the simulation studies, the possible use of the silicon detectors for the plasma X-ray tomography diagnostics is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call