Abstract

ABSTRACTA numerical simulation method was developed to provide effective tools to estimate the ballistic resistance of Kevlar 49 fabric for gas turbine engine containment system in LS-DYNA. Material model based on representative unit cell and three-element viscoelastic constitutive equation was employed to describe the dynamic response of single-layer and multi-layer fabrics. The influences of mesh size, hourglass control method in the material model were discussed. The numerical simulation method is used to predict the ballistic performance of Kevlar fabrics in testing condition. The failure mechanism, the stress wave propagation and energy absorption mechanism were investigated and compared with testing results and achieved good agreements. It is indicated that the developed numerical method provides promising results in modelling the high-speed ballistic impact events and engine fan blade off events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.