Abstract

This work presents direct numerical simulations of two-phase flows in fuel cell minichannels. Different two-phase flow configurations can be observed in such minichannels, which depend on gas-flow rate, liquid holdup, and wettability of each wall. These flows are known to have a significant impact on the fuel cell’s performance. The different two-phase flow configurations must be studied specially concerning the prediction of the transition among them. In the fuel cell minichannels, experimental investigations are difficult to perform because of the small size of the device and the difficult control of the wettability properties of the walls. In such systems, numerical approach can provide useful information with a perfect control of the flow characteristics, particularly for the wettability aspect. The numerical code used in this study is the JADIM code developed at IMFT, which is based on a “volume of fluid” method for interface capturing without any interface reconstruction. The numerical description of the surface tension is one of the crucial points in studying such systems where capillary effects control the phase distribution. The static and the dynamics of the triple line between the liquid, the gas, and the wall is also an essential physical mechanism to consider. The numerical implementation of this model is validated in simple situations where analytical solutions are available for the shape and the pressure jump at the interface. In this paper we present the characteristics of the JADIM code and its potential for the studies of the fuel cell internal flows. Numerical simulations on the two-phase flows on walls, in corners, and inside channels are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.