Abstract

Multi-point stretch forming (MPSF) is a flexible manufacturing technique to form large sheet panels of mild curvature. The traditional fixed shape-stretching die is replaced by a matrix of punch elements, and the sheet metal are stretch-formed over the multi-point stretching die (MPSD) generated by the punch element matrix. In this paper, extensive numerical simulations of the processes for stretching parabolic cylinder, toroidal saddle and sphere parts were carried out by dynamic explicit finite element analysis. The forming results using multi-point die were compared with those of using traditional die. The use of an elastic cushion to suppress dimpling of the part caused by the discrete punch elements was investigated along with a discussion of its influence on part shape accuracy. The effect of the size of punch element and the shape of MPSD on the shape accuracy of formed parts were analyzed. The results may provide useful guidance on determining MPSF parameters and optimizing MPSF manufacture processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call