Abstract

A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve the large strain and displacement deformation of the blade. A modified Coulomb friction model was used to solve the sliding contact between the blade and the dies. The von Mises stress distribution in the blade, the spatial displacement variation and the spring-back of the typical node were investigated in the simulation. The von Mises stress in the blade where the spring-back occurs is lowered from 463.0 MPa to 150.0 MPa before and after the spring-back. A typical node in the blade has a 3.33 mm spring-back in Z direction. The results of the experiments agree well with the simulation. The analysis results are valuable for designing optimal tool dies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.