Abstract

Hydrogen-assisted cracking is one of the most dominant failure modes in metal hydrogen-facing materials. Therefore, the hydrogen-assisted cracking mechanism has been a hot topic for a long time. To date, there is very little published research on numerical methods to describe hydrogen-assisted cracking. This paper presents a new method for the description of hydrogen embrittlement crack growth: an explicit phase-field formulation, which is based on the phase-field description of cracks, Fick's mass diffusion law, and the relationship between hydrogen content and fracture surface energy. A novel computational framework is then developed using the self-developed FEM software DYNA-WD. We numerically calculate several typical conditions in the 3-D coordinates to validate the effectiveness of the proposed computational framework. Specifically, we discuss (i) the failure of a square plate in a hydrogenous environment, (ii) the CT specimen failed with the inner hydrogen, (iii) the plate/failed with the corrosives, and (iv) the failure of the disk test. Finally, the relationship between Mises stress, the concentration of hydrogen, the thickness of the disc, and the loading rate is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.