Abstract

A boundary element method (BEM) is utilized to find numerical solutions to boundary value problems of inhomogeneous media governed by a spatially varying coefficients anisotropic-diffusion convection-reaction equation. The variable coefficients equation is firstly transformed into a constant coefficients equation for which a boundary integral equation can be formulated. A BEM is then derived from the boundary integral equation. Some problems are considered. A FORTRAN script is developed for the computation of the solutions. The numerical solutions verify the validity of the analysis used to derive the boundary element method with accurate and consistent solutions. The computation shows that the BEM procedure elapses very efficient time in producing the solutions. In addition, results obtained for the considered examples show the effect of anisotropy and inhomogeneity of the media on the solutions. An example of a layered material is presented as an illustration of the application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.