Abstract
A double blades pump is widely used in sewage treatment industry, while at present the research on the internal flow characteristics of the double blades pump is very few. So, the CFD technology and the stereo PIV test technique are applied to study the inner flow in a double blades pump whose specific speed is 110.9. The commercial code FLUENT is used to simulate the inner flow in the double blades pump at 0.6Qd, 0.8Qd, 1.0Qd, 1.2Qd and 1.4Qd. The RNG k-ε turbulence model and SIMPLEC algorithm are used in FLUENT. According to the results of the three-dimensional steady numerical simulation, the distributions of velocity field in the impeller are obtained at the five different operating conditions. The analysis of the numerical simulation results shows that there is an obvious vortex in the impeller passage at off-design conditions. But the number, location and area of the vortex are different from each operation condition. In order to validate CFD simulation results, the stereo PIV is used to test the absolute velocity distribution in the double blades pump at Jiangsu University. The distributions of three-dimensional absolute velocity field at the above five different operating conditions are obtained by the PIV test, and the measured results are compared with the CFD simulation results. The comparison indicates that there are vortexes in impeller passages of the double blades pump under the five operating conditions. But as to the area of the vortex and the relative velocity values of the vortex core, there are some differences between the experiment results and the numerical simulation results. The research work can be applied to instruct the hydraulic design of double blades pumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.