Abstract

Abstract Injection compression molding (ICM) is a hybrid injection molding process for manufacturing polymer products with high precision and surface accuracy. In this study, a 3D flow simulation was employed for ICM and injection molding (IM) processes. Initially, the process parameters of IM and ICM were discussed based on the numerical simulations. The IM and ICM processes were compared via numerical simulation by using CAE tools of Moldflow software. The effect of process parameters of mold surface temperature, melting temperature, compression force and injection time on clamping force and pressure at the injection location of molded 3D BJ998MO Polypropylene (MFI 100) part was investigated by Taguchi analysis. In conclusion, it was found that the ICM has a relatively lower filling pressure than ICM, which results in reduced clamping force for producing a 3D thin-walled polymeric part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.