Abstract

ABSTRACTIn this study, numerical calculations by single- and two-phase models of nanofluid turbulent forced convection in a three-dimensional wavy channel with uniform wall temperature are investigated. The numerical results for the Nusselt number ratio (Nu/Nu0) show that the heat transfer performance of a symmetric wavy channel performs better than that of an in-line wavy channel. The multi-parameter constrained optimization procedure integrating the design of experiments (DOEs), response surface methodology (RSM), genetic algorithm (GA), and computational fluid dynamics (CFD) is proposed to design the nanofluid turbulent convection of the three-dimensional wavy channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.