Abstract

Abstract The aim of this work is the simulation of volumetric strain of tuberous crop during drying. We propose a poroelastic model for predicting the drying kinetics and volume loss of potato cubes during convective drying. The Biot’s theory of poroelasticity was used, which considers the Lamé parameters, Young’s modulus and Poisson’s ratio. Drying kinetics and volumetric strain were modeled and compared versus experimental data. An X-ray microtomograph coupled with image analysis was used to visualize the shape and size of the samples during drying. Drying experiments were conducted at 50, 60 and 70 °C, 20% RH, with an air velocity of 1 and 2 m/s. The drying process was interrupted several times to perform tomographic acquisitions. We found a period of ideal shrinkage, nevertheless, the volumetric strain reveals a kinetic behavior over time. The model computes the volumetric strain, which describes correctly the experimental data obtained by microtomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.