Abstract

The vena cava filter is a filtering device to prevent pulmonary embolism caused by thrombosis from lower limbs and pelvis. A new retrievable vena cava filter was evaluated in this paper. To evaluate the hemodynamic performance and thrombus capture efficiency after transplantation, numerical simulation of computational fluid dynamics was performed. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, filter wall shear stress, the ratio of area with wall shear stress, and the thrombus capture efficiency with the thrombus diameter of 5 mm, 10 mm, 15 mm and the thrombus content of 10%, 20%, 30%, respectively. Additionally, in vitro experimental test was performed to compare its thrombus capture efficiency with Denali and Aegisy Filters. The Denali Filter showed the least interference with the blood flow, followed by the new filter and the Aegisy Filter. The results indicated that the new filter had a higher capture rate in capturing 5mm small-diameter thrombus. This research certain theoretical significance and reference value for the research and development of the new vena cava filters as well as the evaluation of the thrombus capture efficiency of the filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call