Abstract

Abstract A transient numerical model was applied to simulating the axial-directional crystallization purification (ADCP) process of gallium (Ga) raw material at different coolant temperatures (Tc), and the evolutions of melt/crystal (m/c) interface shape, temperature distribution and thermal stresses were simulated and analyzed. The results showed that the m/c interface shape, temperature distribution, and thermal stress in the Ga material were determined by the Tc in the crystallizer during the ADCP process. The temperature gradient and thermal stress in the grown Ga crystal increased with decreasing Tc. At Tc=15 °C, the m/c interface shape was flat, and the temperature gradient was ideal. Therefore, the Ga materials with lower thermal stresses and suitable m/c interface shape, and an ideal efficiency of impurity removal were obtained. The purity of Ga reached 6N standard by using ADCP process repeated 6 times at Tc of 15 °C. The results of the simulation showed good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.