Abstract
Three-dimensional numerical simulations are carried out to investigate the temperature field in the contact zone due to the thermal loading of the workpiece in surface grinding. This technique considers that the thermophysical properties of the workpiece material are non-linear according to temperature, the contact zone between the wheel and the workpiece is assumed as an arc surface, and the heat flux entering the workpiece is assumed as proportional to the local undeformed chip thickness. A good agreement is found between the simulated results and the experimental observations. The high grinding temperature leads to the thermal expansion of the workpiece material, which causes the thickness of the actual material removal layer to be larger than the cutting depth. The grinding temperature at the central portion is higher than that on the side of the workpiece during the wet grinding, thus the material removal layer in the central zone is thicker than that on the side zone, and the workpiece surface is concave across the grinding width.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.