Abstract

The non-axisymmetric cone has broad application prospects and is feasible to be manufactured via die-less shear spinning process which however lacks of research. With the roller path equation and other boundary conditions, the finite element model for non-axisymmetric die-less shear spinning process is established and simulated by adopting ABAQUS/explicit software in this study. The FEM results are experimentally verified by comparing the morphology and the HCAs. The distribution of stress and strain in different working conditions and the ellipticity and the elongation of the material in different spinning process during non-axisymmetric die-less shear spinning process are analyzed. It shows that the 0° area of the flange is the position where the wrinkle occurs easily, and the elongation of the material reaches the maximum value; the larger equivalent stress and strain distribute on the conical surface with the smaller HCA. With the movement of the roller, the ellipticity of the cross section increases in the bigger HCA working conditions, but decreases in the smaller HCA working conditions due to the combined effects of the deformation and the springback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.