Abstract
Laser cladding is an advanced manufacturing technology for preparing high-performance metallurgical coatings on metal substrates that is widely used in industrial production. In order to improve the powder utilization rate and reduce the waste of powder in the coaxial powder feeding laser cladding process, the Euler–Lagrange theory was used to establish the simulation model of gas-powder two-phase flow in laser cladding. Fluent was used to simulate the powder particle size, powder particle shape factor, carrier gas flow rate, and powder feed rate under different process conditions, and the results were verified by experiments. Through analysis, under the process parameters of a carrier gas flow rate of 4 L / min and a powder feed rate of 15 g / min, the powder utilization rate was high and the surface of the cladding layer was smooth. When the particle size was 100 mesh and the particle shape factor approached 1.0, the concentration of powder focus was higher and the convergence effect was the best. The influence of powder process parameters on powder convergence was comprehensively analyzed, which is of great significance for the subsequent optimization design of nozzle and the improvement of powder utilization in the laser cladding process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.