Abstract

Contact thermal resistance is an important indicator of the efficiency of heat transfer between contact interfaces.The contact thermal resistance between the interfaces of superalloy GH4169 in high temperature was investigated byusing ANSYS. The real surface morphology of superalloy was obtained with optical microscope, and its surface modelwas reconstructed in ANSYS. Based on the theory of structural mechanics, the elastoplastic deformation of the microstructure of the contact interface is simulated, and analyzed and obtained the contact thermal resistance between contactinterfaces. The effect of interface temperature on the radiative heat transfer between the contact interfaces was studied.At the same time, the impact of radiation heat transfer between contact interfaces in high temperature is considered.Finally, it was tested by using an experimental test device. The result show that the maximum deviation between thecontact thermal resistance and the contact thermal resistance was 12.60%, and the contact thermal resistance betweensuperalloy interfaces decreases with the increase of interface temperature and contact pressure; the contact interfacetemperature difference increases first and then decreases with the increase of interface temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.