Abstract
Abstract Based on the three-dimensional field of molten pool and twin-roll strip casting experiments, this work verified the cracking mechanism of the strip by establishing mathematical model and rolling experiments. The results showed that due to the instability of the thermophysical field of the molten pool and the inconsistency of kiss curve height, the newly solidified strip will undergo incompatible deformation through the rolling. The stress concentration will appear around the large reduction area and then form slip bands. When plastic strain exceeds the limit of the metal, the oblique cracks will appear in the slip bands periodically or completely penetrate the strip. In addition, tensile cracks could also be produced by incompatible deformation. Therefore, keeping the uniformity and stability of the thermal physical field in molten pool is the key factor to restrain cracks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.