Abstract

In this paper, numerical simulation and experimental investigation on unit heat exchange tube for solar heat receiver are reported. Based on enthalpy method, a physical and numerical model of the unit heat exchange tube was developed. An experimental system of solar simulator test rig was also set up with high temperature LiF–CaF 2 eutectic mixture as the PCM and dry air as the working fluid. The hardware, test procedures, and test results from these experiments are also discussed. The simulating orbit data was numerically analyzed and compared with test data. Canister thermal performance can be predicted well by numerical canister analyses. The results show that the output temperature of the gas of the working fluid tubes meets the expected demand during the sunlight and eclipse period and the maximum temperature and average temperature of the PCM container were all under the safe range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call