Abstract
Magnetic flux leakage (MFL) is a non-destructive testing method used to inspect the pipe and magnetization of the pipe wall to saturation is essential for anomalies to be reliably and accurately detected and characterized. Axial components of magnetic flux density obtained during the MFL inspection have been simulated using three-dimensional finite element analysis and the effects of magnetizing exciter parameters on magnetic flux density are investigated. The pipe modeled in this paper has an outer diameter of 127mm (5 in.) with a wall thickness of 9 mm (0.354 in.). According to numerical simulations, an increase in the magnetic flux density of pipe wall is observed with an increase in the permanent magnet length and height. It clearly illustrates that Nd-Fe-B permanent magnet assembly with 70 mm length and 40 mm height may magnetize pipe wall to near saturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.