Abstract

Clouds have an important impact on Earth’s energetic balance, so measuring accurately the microphysical parameters and using them in research has become one important step in atmospheric studies. Regarding the fact that light scattering probes convert the flow rate to concentration, any wrong assumption or measurement of the flow rate can lead to incorrect results. Applying numerical simulation to an airborne cloud microphysics measurements instrument can provide information that can be measured in any point of the sampling volume, and further used in determination of microphysics parameters, providing more accurate data. Taking this into consideration, in this paper are presented the results of numerical simulation applied to Cloud Aerosol and Precipitation Spectrometer and the comparison with results reported in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.