Abstract

It is important to accurately assess the interaction between the conductor and the soil to ensure the stability of the subsea wellheads during deepwater drilling. In this paper, numerical simulations were carried out to study the lateral dynamic bearing capacity of the conductor considering different contact models between the conductor and the soil. In particular, the contact surface model and contact element model were selected to study the dynamic behavior of pile–soil under a transverse periodic load. On this basis, the influence of the bending moment, the wellhead stick-up, the outer diameter (O.D.) of the conductor and the wall thickness (W.T.) of the conductor, as well as the physical parameters of the soil on the dynamic bearing capacity are discussed in detail. Analysis results show that the lateral deformation, deflection angle and von Mises stress calculated by the contact element model are greater than those calculated by the contact surface model. The maximum value of the lateral deformation and bending moment of the conductor decrease with the O.D. and W.T. of the conductor, and the cohesion and internal friction angle of the soil. However, the maximum value of the lateral deformation and bending moment of the conductor increase with the wellhead stick-up. Both the vertical force and the soil density have a negligible effect on the lateral behavior of the conductor. This study has reference value for the design and stability assessment of subsea wellheads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call