Abstract

Hyperbolic systems of conservation laws often have diffusive relaxation terms that lead to a small relaxation limit governed by reduced systems of a parabolic or hyperbolic type. In such systems the understanding of basic wave pattern is difficult to achieve, and standard high resolution methods fail to describe the right asymptotic behavior unless the small relaxation rate is numerically resolved. We develop high resolution underresolved numerical schemes that possess the discrete analogue of the continuous asymptotic limit, which are thus able to approximate the equilibrium system with high order accuracy even if the limiting equations may change type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.