Abstract
With the consideration of the geometry of tilting pad journal bearing, a new form of the Reynolds equation was derived in this article. The film thickness, the squeeze motion of the journal and the rotation motion of the pad were explicitly contained in the equation. Based on this equation, together with the equilibrium equation of pad pivot, the water guide bearing used in the Gezhouba 10 F hydro-generator unit was numerically researched. The new Reynolds equation for the lubricating film was solved using Finite Volume (FV) discretization, Successive Over-Relaxation (SOR) iteration method and C++ code are included. According to the numerical solution, and the stability of the film and the influences of the film thickness, the journal squeeze effect and the pad rotation effect on film force were discussed. The results indicate that the squeeze effect can not be neglected, although the rotation effect is negligible for both low-speed and high-speed bearings, so the computing time could be greatly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.