Abstract

Abstract This paper presents a numerical investigation on the flow and heat-transfer characteristics of liquid lithium and helium in printed circuit heat exchanger (PCHE) channels with pulsating flow introduced. The effects of the mass flowrate of helium, frequency, and amplitude of pulsating flow were examined, respectively. The findings indicate that the introduced pulsating flow has a positive effect on heat transfer at a lower Reynolds number. With the increase of pulsating frequency, the heat-transfer enhancement may decline, and the pressure drop is reduced, with Colburn factor (j) and Fanning friction factor (f) varying marginally. In the flow state with enhanced heat transfer, keeping a lower pulsating frequency, the heat-transfer enhancement ratio E(h) exhibits an approximately linear increase with the pulsating amplitude. Meanwhile, the average pressure drop, Colburn factor (j) and Fanning friction factor (f) also increase with the amplitude, with the fluctuation amplitude of each parameter directly proportional to the amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.