Abstract

Numerical research of flow past a circular cylinder with a splitter at the subcritical Reynolds number region of 5 × 104—9 × 104 was researched based on Computational Fluid Dynamics (CFD) through solving twodimensional incompressible unsteady Reynolds-averaged Navier-Stokes (URANS) equations with the shear stress transport (SST) k-ω turbulence model. Three different grid resolutions were employed in the verification and validation study of the adopted turbulence model. Various fluid characteristics such as Strouhal number, lift coefficient of the cylinder and the splitter with respect to various splitter lengths and different Reynolds numbers were investigated. It was revealed that the lift coefficient ratio of the splitter over the cylinder remains near 1.6 when the splitter length is 1.5—4 times the cylinder’s diameter. Vortex shedding is strongly inhibited when the splitter length is greater than a critical value of around four times the cylinder’s diameter. The phase difference of the lift coefficient on the upper and lower surface of the splitter varies between −30° and 30°. The maximal lift coefficients are reached when the splitter length is about 2 times the cylinder’s diameter. Besides, the splitter length has little influence on the separation angle around the cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.