Abstract

With the continued development of nuclear power plants, more and more super-large cooling towers are to be built in China and around the world. For the safe operation of nuclear power plants, research work has been done on the causes of collapse of cooling towers, collapse modes and the secondary disasters caused by the collapse of cooling towers. However, the collapse modes and the ground vibration induced by the collapse of cooling towers subjected to the accidental loads have not been fully understood. This paper has been focused on the modes and mechanisms behavior of the collapse of cooling towers subjected to accidental loads. Meanwhile, prediction of the ground vibration due to the collapse of the cooling towers has also been completed in a parallel project. Using dynamic finite element program LS-DYNA, a 3D finite element model for a super-large cooling tower was developed and the nonlinear material models were incorporated. In this paper, four types of accidental loads were considered to trigger the collapse or local failure of the tower, including vehicle collision, airplane impact, local explosion and missile attack. It was found that vehicle collision, missile attack and small TNT equivalent explosives (2kg, 20kg, 200kg) might result in local failure of the cooling tower, however, the tower can still keep stable. On the other hand, large TNT equivalent explosives (2000kg, 4500kg) could cause severe damages in the inclined columns of the cooling tower, and lead to progressive collapse of the entire cooling tower. The two kinds of TNT equivalent explosives caused the same collapse mode while the collapsing duration was different. The airplane impacted at the throat of the cooling tower caused the local failure of shell structure of the tower, and then the progressive collapse of the cooling tower happened due to the gravitational action. The resulting collapse mode was different from that triggered by the local explosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.